D Book
|
繁體版
简体版
科技網
未來車供應鏈
蘋果供應鏈
產業
區域
議題
觀點
每日椽真
報導總覽
商情
AI EXPO
Taiwan
SEMICON
Research
半導體
IC 製造
IC 設計
化合物 / 功率半導體
運算
電腦運算
伺服器
邊緣運算
HPC關鍵零組件
通訊與雲端
寬頻與無線
B5G及垂直應用
Cloud
未來車
CarTech
Ev Focus
車用零組件
顯示科技
顯示科技與應用
AI & IOT
智慧製造
智慧家庭
物聯網
AI Focus
行動裝置
行動裝置與應用
智慧穿戴
新興市場與產業
Green Tech
亞洲供應鏈
新興科技
其他
全球產業數據
Research Insights
Special Reports
Tech Forum
服務
到府簡報
顧問專案
分析師團隊
椽經閣
首頁
Colley & Friends
作者群
活動家
首頁
DIGITIMES 主辦
智慧應用
雲端 & 資安
產品 & 研發
AI & 創新
其他
影音
Tech
Regions
Research
Opinions
Finance
Biz Focus
Event+
Multimedia
首頁
Colley & Friends
作者群
D Book
中文简体版
DIGITIMES
首頁
矽島.春秋
未來車供應鏈
蘋果供應鏈
產業九宮格
科技椽送門
展會
影音
科技網
首頁
未來車供應鏈
蘋果供應鏈
產業
區域
議題
觀點
每日椽真
報導總覽
商情
AI EXPO
Taiwan
SEMICON
Research
半導體
IC 製造
IC 設計
化合物 / 功率半導體
運算
電腦運算
伺服器
邊緣運算
HPC關鍵零組件
通訊與雲端
寬頻與無線
B5G及垂直應用
Cloud
未來車
CarTech
Ev Focus
車用零組件
顯示科技
顯示科技與應用
AI & IOT
智慧製造
智慧家庭
物聯網
AI Focus
行動裝置
行動裝置與應用
智慧穿戴
新興市場與產業
Green Tech
亞洲供應鏈
新興科技
其他
全球產業數據
Research Insights
Special Reports
Tech Forum
服務
到府簡報
顧問專案
分析師團隊
椽經閣
首頁
Colley & Friends
作者群
活動家
首頁
DIGITIMES 主辦
智慧應用
雲端 & 資安
產品 & 研發
AI & 創新
其他
影音
Tech
Regions
Research
Opinions
Finance
Biz Focus
Event+
Multimedia
D Book
詹益仁
乾坤科技技術長
曾任中央大學電機系教授及系主任,後擔任工研院電子光電所副所長及所長,2013年起投身產業界,曾擔任漢民科技策略長、漢磊科技總經理及漢磊投資控股公司執行長。
寧可信其有的迷信
台積電熊本廠(亦可稱為日積電,Japan Advanced Semiconductor Manufacturing;JASM)日前不久舉行開幕儀式,一時冠蓋雲集,台日雙方重要的政經人士均出席開幕盛會,見證此歷史性的一刻。媒體對此重要的事件有諸多的報導,在此不再贅述,但是不知讀者是否注意到日積電的英文標示,是用英文小寫的,尤其是j上面畫龍點睛的一紅點,也正象徵日本國徽。如果讀者注意到日本對外重要的活動,其中的J都一律用英文的大寫,我尤其喜歡大谷翔平代表日本國家棒球隊時,隊衣上那非常流線英文大寫的J,形貌近似於日本的國土。也許讀者會說台積電的英文也是用小寫的,這就是關鍵所在。台積電tsmc為何捨棄英文的大寫,而改用小寫?台積電蔣爸(指蔣尚義)曾跟我說,這是經過高人的指點,因為大寫的T出不了頭,小寫的t可以出頭。雖說是迷信,但是台積電決策者能從善如流,寧可信其有,也是美事一樁。所以日積電大寫的J出不了頭,小寫的j可以做到。在此不禁想到AT&T也將商標由原先大寫的T,增加了小寫的版本,難道是受到台積電成功的影響?在科技產業中如果說起迷信事件,綠色的乖乖算是其中最為人所談論的,你很難想像在先進半導體的機房中,擺了為數不少的綠色乖乖。綠色代表機台在正常的運轉,為了保持機台的穩地度及妥善率,綠色乖乖是絕對少不了的。這一開始也許只是個別的行為,但是在心理作用的慫恿下,逐漸擴展為全民運動。就連超微(AMD)的蘇媽(指蘇姿丰)來台會見在台員工,也要跟綠色乖乖合照張相。這個習慣也曾被英國BBC所報導,當時還有人戲稱,我們真正的護國神山祕密,被別人給揭穿了。前不久我們公司在中國工廠的機台一直有狀況,我就請要去中國維修的工程師隨身帶幾包綠色乖乖,大概效果不錯,中國的工廠隨後通知我們,要寄一大箱的綠色乖乖給他們。這類避邪趨吉的做法,如果善用的話,倒也可以振奮人心激勵士氣。美國在獨立戰爭中,有段時間陷入與英軍的苦戰。但當戰事延伸到紐澤西州時,華盛頓(George Washington)將軍率軍在惡劣的天候下勇渡德拉瓦河,突襲英軍逆轉戰事,被視為是美國獨立扭轉乾坤的一役。但是在行前卻人心惶惶,華盛頓將軍於是召集相關的軍官及士兵,從口袋掏出一枚硬幣,說擲幣的結果如果是人頭面朝上,代表得到上天的祝福,會打勝仗。果然擲幣結果是人頭面朝上,且一連幾次都如此,軍心因而大振,最後取得關鍵勝利。事後華盛頓將軍拿出那枚硬幣,結果硬幣的兩面都是人頭。在軍中不僅有很多迷信甚至是禁忌,個人服役時是海軍的雷達部隊。海軍最忌諱的是餐桌上吃魚不能翻身,因為這意謂著會翻船。有回我不小心將魚給翻了身,身旁的軍官看我一臉驚嚇樣,連忙說我們是陸上部隊,不信這一套。至今我還感謝這位幫我解圍的軍官。
2024-03-28
半導體的經濟學思維
最近讀了幾本關於經濟學的書籍,對於經濟學家利用邏輯分析、數學模型或田野調查等方法來解釋或預測人類或社會的經濟行為,如成長、衰退、貧富等,留下深刻的印象。不免起心動念東施效顰,想要對自己所理解的半導體產業及人才做一番解析。眾所周知,半導體產業鏈可略分為上中下游,在此上游定義為晶圓製造,中游為IC設計,下游則為系統應用。愈往上游走,知識所需的層面就愈基礎且深入,也愈硬體導向;往下游走所需的知識就愈廣泛,愈偏應用及軟體。半導體人才的培養彷彿也有上中下游的概念。以前在學生時代,聽過老師們提起如何培養一位最適切的半導體人才,就是在大學時念物理,碩士時讀材料,最後再攻讀電機博士。由理科到工科,也由基礎到應用。先來談人才的養成。有不少半導體領域的專家,都是在大學時念物理,之後在博士時轉念電機,而卓然有成。前國立陽明交大校長張懋中院士便是此思維下的翹楚,經由物理及材料的訓練,最後拿到電機博士,並成為半導體界國際知名學者。順流而下似乎是水到渠成,但是逆流而上呢?大學時念電機,而博士研究轉攻物理,甚至是理論物理,沒有太多成功的案例。約莫二十年前,台大物理系的招生廣告中,曾高調地宣傳,當時在台積電任職副總以上人士,畢業最多的學校是來自於台大物理系。最近材料專家彭宗平教授,也在媒體表達了,在園區半導體業很多的主管是材料系畢業的。這些都說明了,順流而下是趨勢,也是個好的選擇。產業界又如何呢?先經過了晶圓廠或IDM廠的歷練,轉而從事IC設計,而成就一番事業者大有其人。之前在IC設計領域紅極一時的晨星半導體,其創業團隊就是來自於世大積體電路,從事晶圓代工。但是在IC設計表現優異的公司,轉而往上游晶圓製造發展,鍛羽而歸者卻時有所聞。十幾年前矽統科技自建晶圓廠,就是個失敗的例子;最近又有專攻功率IC設計的公司,在蓋自己的晶圓廠。畢竟IC設計所需的半導體製程技術種類繁多,不是一座晶圓廠就能夠涵蓋的;此外兩者的文化差異頗大,晶圓廠需要嚴謹的態度及做事方法,要經營的好需要有高的產能利用率,在在都與IC設計的思維不相符。但是中游的IC設計與下游的系統應用間的隔閡,卻不是這麼顯著,兩者之間存在著既合作又競爭的態勢。IC設計公司已不再是單純地提供晶片,而是要提供一個解決方案。蘋果(Apple)就是鮮明的例子,不論是電腦所使用的CPU,或是智慧型手機內的AP處理器IC,都是自己所設計。近來雲端服務業者,也開始自行設計AI的晶片。只要是量夠大掌握出海口,且能找到合適的團隊,系統應用業者是可以往中游的IC設計去發展。但是也有失敗的例子,如不久前Oppo便結束旗下的IC設計公司。華為這幾年受到美國的制裁影響不小,創辦人任正非曾公開表示,未來就是要用錢來砸數學家或物理學家,回過頭來把自家屬於上游的根基做好做穩。我在美國留學期間,參加過一場光電領域的研討會,會議最後的問答時間,來自加州理工學院(Cal Tech)的光電大師Amnon Yariv教授,就在黑板上寫了馬克斯威爾(Maxwell)的4個方程式,然後說所有的解答都在裡面。事實上,在電機半導體領域最常使用的歐姆定律,就只佔這4個方程式的一小篇幅。Open AI 創辦人Sam Altman最近宣稱,要花費巨資自建多座先進的晶圓廠,生產AI晶片。換言之就是由下游,直接挑戰上游。經濟學有趣的地方在於,永遠都會有另外一隻手(on the other hand)。有原則就會有例外,這是在處理經濟問題,經常會發生的。Altman是否會成功,且拭目以待。
2024-03-04
大學薪資結構也是另一個國安議題
不久前與一位任教於頂大IC設計的大學同學聯繫,希望同學能推薦其所指導的博士畢業生,因為他一直是有志於IC設計的年輕學子,最希望能爭取加入其麾下、炙手可熱的指導教授。只是得到的回覆卻是,在過去的4年中,他只有畢業1位博士生。現在學子在拿到碩士學位後,便急忙投入產業,連大學現在也很難爭取到半導體相關領域年輕的助理教授。同學還無奈地表示,社會大眾有意識到年輕助理教授的難覓,增加不少額外的獎勵及福利,最不幸的是像他一樣的資深教授,缺乏被關愛的眼神。有位也是任教於頂大的傑出電機系教授,最近被國外的大學以新台幣600萬元年薪挖走。但是這600萬的年薪說高也不高,約略等於國內碩士畢業後工作10年以上,表現不錯並在獲利的IC設計公司任職的年薪。當一位大學教授,發覺自己所培養出來的研究生,畢業後的薪資沒多久便超越自己,會是情何以堪。我們現有的大學教師薪資結構,是不分系所都是一致的,所依據的是公務人員服務法。試想如果今天政府規定所有的大學畢業生,不論其所學專長為何,就業後的薪資是一樣的,完全不考慮市場機制,而未來的升遷是以年資為主要的考量,請問這不是很荒謬嗎?事實上,現行大學教師的薪資結構,大致如此,為何不能做些改變?我在美國留學時所就讀的大學,每年都會公布教職員的薪資。記憶中當時教授年薪最高者,是位醫學院的外科教授,其薪資幾乎是文學院老師的4~5倍,學校美式足球總教練的薪資是高於大學的校長,這一切都是市場機制所決定。唯有市場導向的薪資結構,才有機會創造出有競爭力的環境。事實上在三十年前,大學教授的薪資是高於業界水準,再加上有寒暑假及退休金制度,可以吸引不少博士畢業生,爭相從事教職及研究工作。但是經歷這麼多年,學校的薪資僅微幅調漲,與業界的差距是逐年拉大。老成凋零與青黃不接,是我們目前以科技為主體的大學師資及系所的寫照。我們不斷地在強調人才的培育,也投入了不少資源,但是身負培養人才的大學教師們,他們的福利是否有被照顧到?甚至於該如何爭取到優秀的人才,願意來大學任教,這一切已經是個不折不扣的國安議題。政府已經推行大學彈性薪資有一段時間,讓學校對於表現優異的教師,給予特聘教授或講座教授的頭銜,並得到一定調薪的比例。但是我們要提出的不是20~30%的調整,而是倍數級且符合市場行情的薪資差別。今天一個系主任,倘若系上老師因為外界給予2倍的薪資而提離職,系主任要能擁有資源提供出對等的薪資結構來挽留,而非眼睜睜地予以祝福。既然大學教師的薪資結構是個國安議題,便不能再以與法無據而加以搪塞,齊頭式平等不是真平等。前些時候我們與國內一所大學進行項產學合作案,執行計畫的教授把屬於自己的人事經費列得比較高,但是我們覺得很合理,因為的確有這個價值,但是卻被校方打回,因為超過規定上限。上一回的地方縣市長選舉,少數幾位候選人的碩士論文,因為涉嫌抄襲而被迫退選。社會上就出現一種似是而非的說法,主張碩士學位要寫碩士論文,是個過時的產物而應予廢除。還好是大學的自主,頂住政客們凌駕專業的謬論,我真不敢想像一個沒有論文的碩士學位,其競爭力在哪裡?既然論文都可以考慮廢掉,為什麼薪資結構不能做重大的調整?我的大學同學依舊每天兢兢業業在做研究指導學生,學生們畢業後高高興興地展開其璀璨的前程,但這一切可以維持多久?現在是時候來關注大學薪資結構的國安議題了。
2024-02-20
拿破崙的鈕釦與馬蹄釘
不久前在電影院觀看《拿破崙》(Napoleon)一片,距離上回看拿破崙《滑鐵盧戰役》(Waterloo)一片,已經是五十多年前的事,那時我還在念小學。《拿破崙》演到1812年,拿破崙率領六十多萬以法國為首的大軍,攻打俄國。在嚴寒的冬天一路打到莫斯科,但是因為俄國採取焦土策略,大軍得不到適當的補給而落敗。最後僅殘餘數萬軍隊。此次挫敗也造成拿破崙第一次遭放逐。事後歷史檢討此次作戰失利的原因,當然包括嚴寒、補給,甚至於認為部隊已嚴重感染傷寒。但是好事的化學家,卻提出不同的看法,認為拿破崙在俄國戰敗,原因出在部隊的軍大衣鈕釦。因為大衣鈕釦是用錫所製作的,錫在常溫下可閃閃發光,但在嚴寒下卻會開始裂解,部隊因無法保暖作戰而落敗。結論是擁有軍事天賦的拿破崙,欠缺化學知識。無獨有偶地,15世紀的英國國王理查三世,御駕親征在玫瑰戰役中(Wars of Roses),因為坐騎的一個馬蹄鐵掉落,重摔在地而失掉戰役及一個王國。這個掉落的馬蹄鐵,卻是因為少釘了一個馬蹄釘。這也是拜登(Joe Biden)總統在剛上任時,一手拿著半導體的晶圓告訴媒體,半導體就是美國的馬蹄釘(horseshoe nail),失去一個馬蹄釘,就失去一個王國的典故。如同一顆鈕釦,決定一場戰役。半導體不僅是美國的馬蹄釘,對於世界幾個主要的大國亦是如此,當大國們體認到馬蹄釘的重要時,代表其已經開始失去了。眾所周知,半導體是發源於美國。二次大戰後,美國為了圍堵共產勢力,認為扶持起日本,振興日本經濟,對美國是有利的,當然台灣也獲得美援及美軍協防。Sony創辦人盛田昭夫,在1948年就到了貝爾實驗室,看到才剛發明的電晶體。日本很快地取得美國授權,開始發展半導體產業,之後的70年代,日本製可隨身攜帶的半導體收音機風行於全球。到了70年代初期,當時美國總統尼克森(Richard Nixon)曾說過,一個有歷史的民族,是不會滿足於只當電晶體收音機的製造者。果不其然,日本的半導體產品開始席捲美國的市場,尤其是DRAM,美國廠家紛紛退出。我記得在美國留學期間,參加國際電子元件研討會(IEDM),當時的主流技術幾乎都是由日本公司所發表。美國感受到威脅,祭出針對日本的關稅、反壟斷等商務措施,同時開始扶植南韓。日本半導體產業的衰敗,除了日圓升值、泡沫經濟、未能掌握到數位時代的來臨等因素,但也跟南韓崛起有密切關係。除此之外,美國為了拉攏中國大陸加入西方的民主陣營,以對抗俄羅斯,於90年代中開始,想辦法促成中國以開發中國家加入世貿組織,中國因而受惠於自由貿易,經濟崛起,也獲得不少來自西方的尖端技術。然而,中國還是決定要走不一樣的路,與美國抗衡,也導致近來的科技制裁,尤其在半導體領域。台灣的半導體產業則完全不在美國的戰略架構下,所獨立發展出來的,但是跟美國也脫離不了關係,因為我們的人才養成及技術來源,很多都來自於美國。經過了幾十年的努力,台灣是個擁有半導體馬蹄釘的國家,現在我們忙著到全球各地幫馬匹們釘馬蹄釘,因為這些國家認知馬蹄釘就是國家安全。但是一旦這群馬匹都有了牢固的馬蹄鐵,我們的國家安全是否因此失去保障?事實上,半導體產業是最不需要去客戶端就近設廠,服務國外的客戶,因為半導體本身就沒有關稅,而且又輕薄短小,一個紙箱就可價值數百萬美元。在《拿破崙》及更早的《滑鐵盧戰役》電影中,都描述在滑鐵盧戰役,起初法軍是佔上風的。但在中午過後,拿破崙因為身體不適,一度將指揮權交給副手,因而出了亂子,其所倚重的騎兵大量地損失,再加上敵軍增援部隊的來到而落敗。所以一個公司甚至一個國家,指揮權的轉移是非常的關鍵。我們的馬蹄釘不多,國家安全要有保障。
2024-01-18
崛起中的中國第三類半導體產業
不久前我請教台灣一位長期投入碳化矽(SiC)元件開發的教授,我問他,你使用過不同廠商的基板,哪一家的表現最好?因為碳化矽基板佔其製作好晶圓成本的一半以上,而且又是技術難度最高的部分。他莞爾地對我說,要說實話嗎?他的結論是中國的表現最好,而且價格最具有競爭力,台灣生產的及美國的次之,美國廠商因為是IDM,最好的基板大都留給自家用。幾個月前有2則新聞吸引我的注意,一則是德國英飛凌(Infineon)與中國的山東天岳、北京的天科合達,簽訂碳化矽基板長期採購合約,現階段供應6吋晶圓,而未來將是8吋。2家公司是目前中國碳化矽基板的主要供應商。另一則新聞是歐洲的意法半導體(STM)與廈門的三安光電,計劃在重慶建1座8吋碳化矽晶圓廠,劍指中國蓬勃發展中的電動車產業。三安也規劃自建1座8吋碳化矽基板的生產基地。英飛凌與意法,佔碳化矽元件及模組全球市場50%以上比例,而意法更是率先在2018年供應Tesla Model 3碳化矽元件,此舉正式引爆碳化矽風潮。目前全球碳化矽基板的需求量每年約50萬片,以6吋為主流,七成以上由美國的2家廠商所供應。中國市佔率大概10%,但是隨著產能逐漸開出,以及中國在電動車的強勁需求,預估中國碳化矽基板的全球市佔率,很快會超越5成。現在碳化矽產業目光的焦點在於8吋晶圓開發,傳統6吋以下的成長單晶柱(ingot)的方法,是使用蒸氣的昇華法,將6吋的seed wafer置於上端,利用高溫爐內材料的蒸氣附著於上端晶圓的表面,而得以成長晶柱。此方法最大缺點,乃晶柱成長速度慢且晶柱長不厚,若運用此法在成長8吋的基板,將更形捉襟見肘。上述中國的2家供應商已開始使用新的液態成長法,來成長碳化矽8吋晶柱。此法較接近一般矽晶圓的晶柱成長,在上端可以使用較小尺寸的seed wafer來成長8吋的晶柱,由於不需要到氣態,成長的溫度也可以較低,同時速率較快,晶柱也可以厚些。但是液態成長法需處理液態材料與固態晶柱的介面,在溫度梯度的控制要非常精準,這恐怕不是一般商用爐子能做到的。因此推論中國供應商已經具有自建精確溫度控制爐子的能力,事實上一家產能夠規模的碳化矽基板廠商,是需要上千台的高溫長晶爐,因此自建高溫爐是必要的選項,這方面中國的供應商是做到了。我們再來談另一個第三類半導體氮化鎵(GaN)。不久前的一則新聞,美國一家氮化鎵元件主要供應商EPC,向美國聯邦法院及國際貿易委員會(ITC),控告中國的英諾賽科侵害其在氮化鎵元件的專利。事實上英諾賽科從2023年第1季開始,其在氮化鎵元件的營收已經躍居全球首位,其在珠海及蘇州各有1座8吋氮化鎵專屬的晶圓廠,以及超過20部有機金屬化學氣相沉澱設備(MOCVD)成長氮化鎵的磊晶片。目前月產能為1.5萬片,佔了全球總產能一半以上,預計在2025年英諾賽科產能要擴充到每月7萬片,以此推估需要70部MOCVD機台。英諾賽科有別於其他主要氮化鎵供應商,其商業模式是IDM,在成本上相對是有優勢。相同的元件規格,比其他供應商的價格低30~50%。氮化鎵元件在2年前,因為65W的手機快充電源插頭熱門一時,如今市場比較低迷。但是近來在人工智慧(AI)伺服器所需的直流電源轉換,對於中低壓氮化鎵的需求正在崛起,這部分需要操作在較高的切換頻率,及更大的輸出電流,正符合到氮化鎵的物理特性。如果氮化鎵的價格有機會降到略高於矽基功率元件,毫無疑問氮化鎵的需求是會起飛的。在第三類半導體研發上中國也是不遺餘力地投入。以大學為例,幾所著名的大學,如北京清華、浙江大學、西安交大、成都電子科大,甚至南京航天,都成立關於第三類半導體的研究群,訓練出眾多的碩博士生投入相關的產業。每年IEEE功率半導體最主要的會議ISPSD,中國的高校在第三類半導體的議題上,貢獻一半以上的論文。中國第三類半導體廠商的確接受政府為數不少補助,才得以建立今天的產業規模。從已公布的財報而論,山東天岳及天科合達本業都是虧損的,英諾賽科離損益兩平是更遙遠。在此情境下,各家仍卯足全力來擴產,似乎是不理性的行為。但是綜觀中國過往在太陽能、LED甚至鋰離子電池,在市場還在萌芽之際,便積極地投入產能,只要這個產業的成長性是可被預期的,假以時日,中國擁有這產業的半壁江山,就具有充分話語權。台灣該如何自處呢?在此態勢下。多年前個人就說明了,第三類半導體產業需要供應鏈的垂直整合,而在台灣卻缺乏政策上有效的支持,現在再來談,為時有點晚。我們只有期望在全球兩大陣營的僵持下,我們想辦法能左右逢源,但這可以維持多久呢?
2023-11-24
神奇的韋伯紅外線太空望遠鏡
2023年9月下旬,媒體報導韋伯太空望遠鏡(James Webb Space Telescope;JWST)探測到木星的第二號衛星(木衛二,Europa)的表面冰層,有二氧化碳的蹤跡。科學家長期以來認為在木衛二及土衛二(土星的第二顆衛星),其表面冰層下因為引力的作用,存在著豐富的海水。這兩顆衛星是太陽系內除了地球外,最有可能存在生命的星球。土衛二在先前已有NASA卡西尼(Gassini)太空船飛越,偵測到其表面有碳、氫、氧、氮甚至磷等,構成生命必要元素,而此次木衛二是經由太空望遠鏡的觀測而獲得。韋伯太空望遠鏡自從2022年發射升空後,除了提供了更遙遠星際的清晰影像外,由於其主要觀測的光譜位於近紅外線(near IR;NIR,波長0.6~5微米),及中紅外線(Mid-IR;MIR,波長5~28微米),可見光波長是在0.4~0.7微米,因此對於天文學家研究宇宙的形成、星系的演化及探測可能的生命,提供必要工具。除了影像的提供外,韋伯太空望遠鏡也內建分光儀,可以做光譜分析,恆星的發射光譜或者行星的吸收光譜,舉凡二氧化碳、氫分子或者甲烷等,都逃不過它的利眼。韋伯太空望遠鏡是如何做到的?這個偉大的計畫是為了接續第一代的哈伯(Hubble)太空望遠鏡而成立,從構想到實現超過20年的功夫,總耗費100億美金,由美國、歐洲及加拿大三個太空單位合力所完成。韋伯太空望遠鏡是為了紀念美國在執行登月阿波羅計畫時期,NASA的主管James Webb而命名。韋伯與哈伯除了偵測的光譜不同外,哈伯以可見光為主,兩者所運行的軌道也不一樣。哈伯是位於地球上空約550公里的高度,相當於現在低軌衛星的距離;韋伯太空望遠鏡卻是位於離地球150萬公里的超高空,是月球與我們距離的4倍遠。為何會放在那麼遠的太空?原來那個區域是個所謂被引力遺忘的角落。十八世紀2位偉大的數學家Leonhard Euler以及Joseph-Louis Lagrange,已計算出在地球運行的軌道面,有5個區域是太陽與地球引力互相抵消的地方,這150萬公里的高空是離我們最近,且同時可以背對著太陽、地球及月球,可以避免三者所造成的光害。哈伯因位於低軌道,因此時時受到這三個星球不同引力的影響,需要使用燃料噴氣,來調整望遠鏡本體的姿態及角度。韋伯沒有此一限制,可以讓望遠鏡的生命週期更久。但是低軌道的哈伯是太空梭可以抵達的地方,可以進行必要維修,韋伯可就沒有這個福分了。記得哈伯在剛運作時,影像是模糊的,原因是鏡片有2微米的誤差,後來是透過太空梭及太空人實施必要更換,方能正常運作。韋伯的核心是NIR以及MIR鏡頭,這兩段光譜是如何被吸收而轉換為電訊號,傳回到地球?這裡就牽涉到2種不同的半導體材料。作為紅外線的光偵測器,這分別是NIR的碲化汞鎘(Hg1-xCdxTe;MCT)以及MIR的Si(As doped)。MCT乃化合物半導體,一般大眾所熟悉的化合物半導體是IV-IV(四四族)的SiC, SiGe,或者III-V(三五族)的GaAs、GaN,而MCT卻是II-VI(二六族)。II-VI族半導體其共價鍵愈弱,而離子鍵愈強,因此不論在晶體或磊晶的成長,或是在製作元件上就更具有挑戰性。這兩種紅外光偵測元件,分別是由2家位於美國加州,專業於光偵測器的公司所研發完成。MCT藉由改變x的組成,也就改變半導體的能隙(bandgap),因此可將光偵測元件的吸收光譜的臨界值,由波長0.8微米(x=1)調整到5微米(x=0.3);Si(As)則是利用砷摻雜在矽半導體內,所需要的游離位能(30-40 meV),當作MIR的吸收能階,使得元件得以吸收28微米的紅外光。然而這2種紅外光的偵測器,都得在極低的溫度下操作,尤其是Si更是需要在絕對溫度10K以下的超低溫工作。韋伯在面對太陽的一面,溫度常會超過攝氏50度,科學家們利用特殊的材料,製作出大面積且極薄的光罩版,阻絕太陽的光及熱,使得在很短的距離內,溫度可以下降300度,讓這兩類的紅外光偵測器,才得以正常的工作。30年前當筆者剛任教於國立中央大學,參與部分中研院天文所的無線電天文望遠鏡的計畫,時任中大校長的劉兆漢先生就告訴我,天文觀測所使用的技術都是最尖端的科技,劉校長本身是位太空科學專家。這件事發生在中研院的次毫米波無線電天文陣列上,也同時見證於韋伯紅外線太空望遠鏡上。
2023-10-19
半導體與貝爾實驗室
2023年7月28日台積電盛大地慶祝其永久性研發大樓的落成,過去台積電的研發中心都是跟著不同的廠區而遷移,逐水草而居,如今擁有永續基地。這棟大樓可容納超過7,000名研究人員,而台積電的研發經費,多年來都佔其營收的8%。以去年(2022年)超過730億美元營收,研發經費就將近55億美元。所以創辦人張忠謀特別提到,台積電的研發經費,遠遠超過麻省理工學院(MIT)1年約20億美元的研究經費。董事長劉德音在研發大樓落成慶祝儀式中,特別提到希望將台積電的研發中心,打造成台版貝爾實驗室。貝爾實驗室這座我學生時代心目中的科學聖地,是造就15位諾貝爾獎得主的殿堂,包括2位華裔的崔琦及朱棣文教授。研究半導體的學者若此生沒到過貝爾實驗室做過一段時間的研究,如同伊斯蘭教信徒沒去過麥加朝聖般。貝爾實驗室的經費來自於母公司美國電話及電報公司(AT&T)。1982年全盛時期,貝爾實驗室經費是16億美元,員工2.2萬名,其中博士學位者超過3,000人。當時AT&T年營收是347億美元,佔當時美國GDP的1.1%,所以貝爾實驗室的研發經費是AT&T營收的4.6%。1984年因為反壟斷法的關係,AT&T拆分7家獨立的區域型電話公司,從此貝爾實驗室的經費及重要性開始走下坡,如今已成為諾基亞(Nokia)旗下一員。眾所周知電晶體的發明,誕生於1947年的貝爾實驗室,除此之外MOS電晶體、非揮發記憶體floating gate、半導體雷射,甚至於也拿過諾貝爾獎的CCD元件,皆出自於貝爾實驗室,當然還有更多在半導體領域重要發明。延伸報導台積電全球研發中心啟用 張忠謀透露台灣成全球兵家必爭之地的關鍵 (新增影片)貝爾實驗室從1940年代,一直到1990年代,在半導體領域的研究上一直是獨領風騷。MOS電晶體以及其所衍生的CMOS,是所有積體電路以及分離器件中最被廣泛使用的元件結構,於1959年由Mohamed Atalla以及韓裔的Dawon Khang(姜大元)博士在貝爾實驗室所共同發明。MOS元件的特點在於,在電晶體的控制端—閘極(gate)金屬下方成長一層薄的二氧化矽絕緣層,可利用絕緣層的電容來控制輸出的電荷量,同時不會有電流流進閘極。當電晶體尺寸愈做愈小的同時,MOS所消耗的功率愈少,而操作的速度就愈快,成就摩爾定律,也造就今日世界。現今半導體兩大記憶體分別是DRAM以及Flash(NAND、NOR),DRAM是1966年由IBM所發明,其作用是將電荷儲存在矽半導體所製作的電容內,並由電荷電位的高低決定記憶的位元是0或1。但是半導體內的電容很容易漏電,隨時得補充電荷以維持記憶狀態,一旦關掉電源記憶隨即消失,故被稱為揮發性記憶體(volatile memory)。Flash是非揮發性記憶體(non-volatile memory),即使無電源供應,記憶狀態依舊保持。其中最關鍵的結構floating gate,是施敏教授(S.M. Sze)與姜大元博士於1967年提出。此架構是將儲存電荷的閘極,完全包覆在二氧化矽絕緣層內,不會有漏電流發生,而電荷是利用量子穿隧效應(tunneling)注入進floating gate。據施敏教授口述,他是在實驗室大樓自助餐廳看到鮮奶油蛋糕,在蛋糕內的層與層之間,塗了一層薄的鮮奶油,激發floating gate這個創意。此一重要創舉,第一次投稿時卻被學術期刊的編輯退件,最後是刊登在貝爾實驗室所辦的學術期刊內。談論到施敏教授,必須得提他所著作的《半導體元件物理》(Physics of Semiconductor Devices)一書,該書是是半導體領域的聖經。我在研究所時讀的是1981年的第二版,全書有880頁。有一整年的時間對我而言,幾乎是晨昏定省,從第一章第一節,研讀到最後一章完。到後來整本書的封皮都剝落了,有時讀累了就趴在書上小憩,書本中難免夾雜個人的汗水及口水。施敏教授是向貝爾實驗室申請,全職來寫這本書,這本書內容廣泛且論述清晰,尤其參考資料非常豐富。《半導體元件物理》不僅是本教科書,也是做研究所需的入門書籍。據他本人描述,所收集的論文資料,堆起來有一個人高度。施教授寫書的時候,在他的書桌旁放了一個字紙簍,如果他看不懂的文章就丟到裡面。他說如果連他都看不懂,那很難有人會懂了。據統計在美國有4成科學家,其出生地非來自本土,相信在貝爾實驗室的比例更高。Atalla出生地是埃及,姜大元博士是南韓,施敏教授出生於南京,在台灣完成大學教育。即便連兩位因CCD發明而獲得諾貝爾獎的 Willard Boyle及 George Smith,前者也來自於加拿大。惋惜的是在南韓被視為國寶的姜大元博士,不幸於1992年在結束學術會議,返家途中昏倒過世,否則也極有可能獲得諾貝爾的殊榮。最後,我們祝賀台積電研發中心的落成及運作,也期望一如貝爾實驗室能吸引國際一流人才進駐,引領半導體相關領域的研究,邁入下一個新紀元。
2023-09-27
AI風潮引爆矽光子應用
2023年9月的SEMICON Taiwan會議中,矽光子(Si photonics)技術引起熱烈討論。在9月5日「矽光子國際論壇」中,筆者也受邀與台積電、日月光、工研院、美國Cisco及日本愛德萬測試(Advantest)的專家同台,主持人是日月光執行長吳田玉,共同討論矽光子技術在人工智慧(AI)世代中,所能扮演的角色。以下是個人在這個議題中,所表達的看法。眾所周知,矽光子技術已經發展超過20年,主要是利用CMOS成熟製程,將處理光訊號所需的光導管、調變器、光柵、耦合器,甚至光偵測器等主被動元件整合在矽基板上。目前唯一無法整合進矽基板者,是半導體雷射,因為涉及到不同的材料系統,只能以封裝的方法處理。矽光子基板負責將光的訊號轉換為電訊號,此為接收端,發射端就是將電訊號經由雷射轉換為光訊號。由於使用成熟半導體製程,在微小化、集成度、量產的良率,甚至成本都具有優勢。再加上使用光訊號,對比於電訊號,又有著高頻寬、低延遲(low latency)以及低功耗的優勢。自從光纖通訊在1980年代被引進之後,一直擔任訊號傳輸的角色。初期在人類使用數據量還不大的時候,光通訊運用在長距離的傳輸,如海底光纜、大都會地區的網路。隨著數據量的提升,光通訊開始進入區域網路。近來生成式人工智慧(generative AI)的興起,最大的數據產生及傳輸量是發生在AI伺服器之間,因為任何一個大型的模型,都包含數百億個參數,而每次訓練所要花費的算力是驚人的,這些都依賴晶片彼此間的平行運算以及數據交換。拜半導體先進製程之賜,目前處理或計算1個指令,只需要1~2 nsec的時間;但是數據傳輸速度的增幅,卻永遠跟不上算力的增加。光是在光纖內運行1公尺距離會產生5 nsec的延遲,因此AI伺服器的算力有相當的時間在等待數據而停滯。若改用電訊號來傳輸,等待的時間就更久了。解決之道當然就是將轉換光訊號的裝置,愈靠近CPU/GPU/ASIC晶片愈好,以改善訊號延遲,這中間最好避免掉電路板。因此,co-package optics(CPO)包含矽光子基板,便應運而生。CPO目前主力是放在交換器(switch)內,將矽光子基板與處理電訊號IC晶片,以堆疊(stacking)的封裝方式結合,再連接上光纖,比鄰於各式IC處理器,這就是最靠近及最低延遲的選擇方案了。在2000年代中期,IBM在其年度的技術展望(Technology Outlook),特別提出光連結(Optical interconnect)為未來技術的重點。IBM非常自豪於技術上的預測,也表示自己從來沒有預測失敗過,有的只是發生時間的早晚。彼時並不知道會有AI運算的蓬勃發展,也不清楚半導體的技術會進展到3奈米以下。但是很明確的是,人類在數據傳輸的使用量會持續地增加,而矽光子技術將在光連結上扮演重要的角色。當時光連結的提出,也不清楚是會發生在晶片與晶片間(chip to chip)訊號的連結,還是載板之間(board to board)訊號的連結,或者是伺服器架間(rack to rack)的訊號連結。如今伺服器架間的訊號連結,甚至於架上的層與層之間(unit to unit),已經廣泛地採用光連結技術。而晶片之間訊號的連結,已經被台積電的先進封裝技術3DIC/CoWoS/chiplet/fabric,使用電訊號交換給解決了。接下來的重頭戲會是載板之間的訊號連結,目前的主力還是使用電訊號的連接,至於光的連結就拭目以待。CPO結合矽光子技術,提供AI風潮中提升數據傳輸速度的最佳解決方式,這對於產業生態鏈卻是一個巨大的改變。傳統使用插拔(pluggable)光模組的生態系,並不會坐以待斃。在今年(2023)的全球光通訊大會(OFC)上,linear-drive pluggable optics(LPO)即受到廣泛的注意,被視為傳統勢力的一大反撲。Linear-drive的概念是拿掉插拔光模組內re-timer/DSP功能,而增加在ASIC內訊號處理的負擔,如此便減低模塊內的訊號延遲及功耗。因此之故,可以再往前推進1~2個世代的產品,而整個產業生態鏈不會有太大的變化。如同半導體製程所使用的浸潤式DUV微影設備,在不改變DUV曝光機的生態下,又往前推進幾個世代,直到EUV曝光機接手。矽光子CPO的世代終究是會來臨,若LPO順利推展,可能會使發生的時間延後。事實上,linear-drive的概念亦可以使用在CPO上,如此不論在訊號延遲及功耗上,又會有更佳的表現。本文感謝與鄭鴻儒博士的討論。
2023-09-15
科學家,核子武器與政治
利用周末時間觀賞剛上映的電影〈奧本海默〉。在當學生的時候,就聽聞過「奧本海默事件」以及在美國的「麥卡錫主義」(McCarthyism),但這次是以奧本海默(J. Robert Oppenheimer)本人為中心,以電影手法完整地交代事件始末,包括二戰期間製作原子彈的「曼哈頓計畫」(Manhattan Project)。在二戰前,整個學術的重心都在歐洲。Oppenheimer在完成哈佛大學學業後,就負笈歐洲,最後在量子力學大師Max Born的指導下完成博士學位。通常博士候選人,都會被口試委員嚴格且鉅細靡遺地拷問,其目的是要讓新科的博士們知道:你的學術生涯才開始,不要太得意。但據聞Oppenheimer的口試很快就結束,其中一位委員說,還好我溜得快,Oppenheimer已經開始質疑口試委員了,由此可見其桀傲不遜的個性。曼哈頓計畫是由愛因斯坦(Albert Einstein)具名,寫信給美國羅斯福總統(Franklin D. Roosevelt),憂心納粹德國已經領先發展毀滅性核分裂武器所衍生而出,並由Oppenheimer擔任製作原子彈的計畫主持人。然而在第一顆原子彈還未試爆完成前,納粹德國就投降了,但日本還在頑強抵抗中。當時科學界開始遊說,希望停止曼哈頓計畫,但接任羅斯福的杜魯門總統(Harry Truman),為了減少美軍在太平洋戰爭的損失,先後丟擲2顆原子彈在日本的廣島與長崎。片中有一段敘述Neil Bohr訪問洛色拉莫士(Los Alamos),帶來納粹德國在發展核子武器的最新訊息,而納粹計畫主持人正是另一位量子力學大師Werner Heisenberg。Heisenberg在核分裂的理論計算上犯了個錯誤,導致納粹原子彈的發展受挫,而他本人在二戰後表示其有意拖延納粹在這方面的進展,但這至今仍是個科學懸案。美國最後能領先納粹德國製作出原子彈,除了Oppenheimer主持的曼哈頓計畫外,另一位關鍵人物是義大利裔的費米(Enrico Fermi)博士。費米博士恐怕是物理學史上,最後一位在理論與實驗都有傑出表現的科學家,就如同棒球場上的二刀流。費米博士在芝加哥大學足球場看台的地下室,建立核子分裂的反應堆。在最後關鍵時刻,他親自核對計算及調整實驗的反應堆,完成了人類第一次能夠控制且持續核子分裂的鏈鎖反應。實驗成功之後,對外所使用的暗語是義大利航海家登上新大陸。芝加哥大學在足球場原址也立了個紀念碑。Oppenheimer最終在戰後因被認定為共產黨的同路人,而被剝奪在原子核領域接觸新知識與發展的權利。影片中的泰勒博士(Edward Teller),被譽為氫彈之父,在曼哈頓計畫與Oppenheimer有不同的意見,執意要發展核融合的氫彈,導致他在戰後Oppenheimer的聽證會上,做出不利於Oppenheimer證詞,而後不見容於學術界。泰勒博士本人在四十多年前,曾受邀訪問台灣,全程由浦大邦博士陪同,訪問全台多所大學。當時我才大三,但有機會與泰勒博士近距離的接觸,並得到簽名及合照,他非常津津樂道與楊振寧教授的師生關係。在當時戰後的芝加哥大學,楊教授原本希望跟費米博士研習實驗物理,因為要建設中國需要實作為基礎,但無奈其動手做實驗的火候不夠,最後泰勒博士說服楊振寧教授跟他做理論的計算。當時,我們曾問泰勒博士在研究過程中,是否會因遭受挫折而產生低潮,他的回答居然是,我從沒經歷過低潮時刻。無獨有偶地,舊蘇聯時期的物理學家Andrei Sakharov,因為從事氫彈的開發,被譽為是蘇聯的氫彈之父。之後他本人開始致力於限制核武器的擴散,成為人權鬥士,卻不見容於蘇聯當局,而長期被軟禁在一小公寓內。他於1975年獲頒諾貝爾和平獎時,蘇聯甚至拒絕他出境領獎。不論是Oppenheimer、Heisenberg以及Sakharov,這幾位參與毀滅性核子武器的科學家,當初都基於愛國情操而參與,最終卻是由政治凌駕一切。Oppenheimer在甘迺迪(John Kennedy)總統時代被平反,而Sakharov在戈巴契夫(Mikhail Gorbachev)當政時也被平反了。但是遲來的正義會是正義嗎?李遠哲院長有次在訪問以色列,晚宴席中他請問鄰座政壇人士,如何解決以色列與巴勒斯坦間的問題?對方回答,你們科學家就只想要解決問題,我們政治人物是要與問題共處的。試想如果問題都解決了,就不存在政治人物了。愛因斯坦在美國使用原子彈結束二戰後接受訪問說,沒想到他們政治人物真的使用原子彈,我寧可去當個修錶匠,內心充滿著無奈。
2023-08-01
中國管制鎵出口對供應鏈的影響
日前中國政府無預警地宣布,鎵與鍺金屬將採行出口管制。頓時媒體大篇幅報導,尤其著墨於這是中國政府對美、日及歐洲,在半導體上的諸多對中國限制的一項反擊。鎵與鍺都是半導體領域中重要的材料,尤其是中國產量佔全球8成以上的鎵,更具有關鍵的地位。整個供應鏈開始嗅到緊張的氛圍,擔心供貨受到影響。化合物半導體中,砷化鎵(GaAs)、磷化鎵(GaP)及氮化鎵(GaN)都需要使用鎵的金屬,相關的產品則包括5G手機RF功率放大器、寬能隙功率元件、LED及半導體雷射等電子及光電元件,影響所及不可謂之不鉅。鎵對供應鏈的影響可分為2類,其一為基板,另一則是磊晶層。基板的厚度通常在500微米,而磊晶層厚度則在幾十微米,甚至10微米以下。磷化鎵基板使用量較少,而氮化鎵沒有基板,所以在基板的供應上,就以砷化鎵為大宗。日本的住友(Sumitomo)、美國的AXT以及德國的Freiberger,為主要的供應商;3家業者主宰砷化鎵基板全球市場已超過30年,是個穩定且成熟的市場,每年的產值大約3億美元。近10年來中國的紅色供應鏈,已開始進入砷化鎵基板的市場,台灣的晶圓代工及LED廠已有使用,品質及價格都有競爭力。倘若中國開始管制鎵的出口,短期內上述的3家公司會受到些影響,但對整體供應鏈影響不大。中國供應商要擴充砷化鎵基板的產能,並非難事。鎵金屬在磊晶的供應鏈上,中國能發揮的影響力就更弱了。因為幾乎所有相關的磊晶層,都是經由有機金屬化學氣相沉積(MOCVD)來完成,而參與反應的主要化學品為三甲基鎵(Trimethylgallium;TMG),TMG的供應商都來自歐美及日本。若中國管制鎵的出口,首當其衝的會是中國上千台的MOCVD,以及整個化合物半導體產業。談完了鎵,我們來看看氮化鎵的供應鏈。Yole最近的報導指出,中國英諾賽科的氮化鎵元件產值,在2023年第1季首次超越PI、EPC、Navitas等美國為主的元件設計公司,而且英諾賽科是自有的8吋晶圓廠,產品涵蓋高壓及中低壓元件,並以IDM的方式與使用6吋晶圓代工的上述美國公司競爭,高下自然不言而喻。過往晶圓代工廠,為了讓老舊的6吋廠有新的商機,因此引進氮化鎵元件。然而十幾年過去了,6吋廠在良率及成本上,一直無法有效改善,導致現今氮化鎵最大的瓶頸,就是價格過高,市場開拓有限。英諾賽科的商業模式,在初期雖然有相當大的資本投入,但未來的營運是會漸入佳境,我們且拭目以待。氮化鎵是一個卓越非凡的半導體材料,不僅是因為其具有寬能隙特性,還有1項特質是其他種類的半導體所沒有的。一般的半導體,每產生1顆電子,就會伴隨1顆帶正電的離子產生,當我們希望元件內有更多的電子或者電流,正離子就更多,電子會遭遇到更多的散射(scattering),電子遷移率便降低了,最後導致電流增加的有限。氮化鎵元件內的電子,是由晶體的極性(polarization)以及磊晶層之間的應力所造成,因此沒有正離子,所以既使存在很高的電子濃度,電子還能夠維持相當的遷移率。這對於元件的導通電阻及切換速度,都有著顯著的改善,這正是電源轉換系統最重要的兩個特性。個人之前的文章,曾以此兩種特性,對比於矽基板元件。在650V元件,氮化鎵擁有矽元件的10倍優勢;到了100V元件,此優勢降為3倍;30V元件優勢仍然有30%。所以氮化鎵元件應該被廣泛使用於電源轉換系統,然而現今最大的障礙就是成本,氮化鎵的成本要能夠降為一半,就非常有競爭力了。這有賴在供應鏈上使用8吋的晶圓廠,以及增加MOCVD每台的磊晶產能。中國政府對於鎵的出口管制,是經過深思熟慮的決定。一方面可以雄壯威武地回應西方國家及日本的制裁,但另一方面卻不會對產業鏈造成過多負面的影響。畢竟中國對於化合物半導體產業,是有完整的戰略布局。
2023-07-11
訂閱椽經閣電子報
新文章上刊時發送,提供您DIGITIMES專家及顧問群的最新觀點、見解。
熱門報導
川普風暴與科技業的諸多挑戰(14):留下一線生機
川普風暴與科技業的諸多挑戰(13):鄉村包圍城市
<<
1
2
3
4
5
>>
智慧應用
影音