D Book
|
繁體版
简体版
科技網
未來車供應鏈
蘋果供應鏈
產業
區域
議題
觀點
每日椽真
報導總覽
商情
AI EXPO
Taiwan
SEMICON
Research
半導體
IC 製造
IC 設計
化合物 / 功率半導體
運算
電腦運算
伺服器
邊緣運算
HPC關鍵零組件
通訊與雲端
寬頻與無線
B5G及垂直應用
Cloud
未來車
CarTech
Ev Focus
車用零組件
顯示科技
顯示科技與應用
AI & IOT
智慧製造
智慧家庭
物聯網
AI Focus
行動裝置
行動裝置與應用
智慧穿戴
新興市場與產業
Green Tech
亞洲供應鏈
新興科技
其他
全球產業數據
Research Insights
Special Reports
Tech Forum
服務
到府簡報
顧問專案
分析師團隊
椽經閣
首頁
Colley & Friends
作者群
活動家
首頁
DIGITIMES 主辦
智慧應用
雲端 & 資安
產品 & 研發
AI & 創新
其他
影音
Tech
Regions
Research
Opinions
Finance
Biz Focus
Event+
Multimedia
首頁
Colley & Friends
作者群
D Book
中文简体版
DIGITIMES
首頁
矽島.春秋
未來車供應鏈
蘋果供應鏈
產業九宮格
科技椽送門
展會
影音
科技網
首頁
未來車供應鏈
蘋果供應鏈
產業
區域
議題
觀點
每日椽真
報導總覽
商情
AI EXPO
Taiwan
SEMICON
Research
半導體
IC 製造
IC 設計
化合物 / 功率半導體
運算
電腦運算
伺服器
邊緣運算
HPC關鍵零組件
通訊與雲端
寬頻與無線
B5G及垂直應用
Cloud
未來車
CarTech
Ev Focus
車用零組件
顯示科技
顯示科技與應用
AI & IOT
智慧製造
智慧家庭
物聯網
AI Focus
行動裝置
行動裝置與應用
智慧穿戴
新興市場與產業
Green Tech
亞洲供應鏈
新興科技
其他
全球產業數據
Research Insights
Special Reports
Tech Forum
服務
到府簡報
顧問專案
分析師團隊
椽經閣
首頁
Colley & Friends
作者群
活動家
首頁
DIGITIMES 主辦
智慧應用
雲端 & 資安
產品 & 研發
AI & 創新
其他
影音
Tech
Regions
Research
Opinions
Finance
Biz Focus
Event+
Multimedia
D Book
詹益仁
乾坤科技技術長
曾任中央大學電機系教授及系主任,後擔任工研院電子光電所副所長及所長,2013年起投身產業界,曾擔任漢民科技策略長、漢磊科技總經理及漢磊投資控股公司執行長。
紀念鋰離子電池奠基者John Goodenough
2023年6月25日,媒體報導美國德州大學教授John Goodenough過世消息,享壽100歲。第一次注意到Goodenough是在2019年,瑞典皇家科學院宣布該年度諾貝爾化學獎,表彰3位傑出科學家在鋰離子電池研究的貢獻,而Goodenough與來自英國的Stanley Whittingham以及日本的吉野彰,共同獲得此殊榮。首先我注意到的是他的姓氏,他要如何地介紹自己?I am Goodenough?其次是他得獎時已高壽97歲,是歷屆諾貝爾得主中年歲最長的一位。Goodenough在鋰離子電池最基礎的貢獻,完成於1970~80年代,也歷經40餘年才終而獲獎。事實上在諾貝爾獎的歷史中,有人是因為不幸離世而失之交臂。其中最令人扼腕的是在2000年的物理獎,頒給IC的發明人Jack Kirby,而另一位共同發明人Bob Noyce卻已於1990年,在美國德州住家,游泳時心臟病發去世,享年62歲。因此,Kirby在諾貝爾委員會的官方文字記載的是「for his part in the invention of integrated circuit」。鋰離子電池因為鋰是最輕的金屬,且又是在週期表上第一族的元素,有著相當高的電化學反應活性。相較於傳統的鉛酸及鎳氫電池,以鋰離子及電子作為電池內部導通的電池,有著輕量化及高能量密度的優勢,所以廣泛地使用於行動裝置及電動車,甚至於儲能系統。第一個鋰離子電池雛型是由Whittingham於1970年所提出,當時是以鋰金屬作為負極材料,而以金屬硫化物作為正極材料。由於鋰金屬的活性,電池相當容易燃燒爆炸。Goodenough改用金屬氧化物作正極材料,添加鈷、錳等金屬,一方面改善電池安全性,同時也大幅地增加電池能量密度,也就是建立當今最廣泛使用正極三元鎳鈷錳(NCM)材料的原型。日本學者吉野彰的貢獻在於,使用石墨碳作為負極材料,取代鋰金屬,更進一步改善電池安全性,並增加電池充放電的壽命。有了這一連串突破性的發展,Sony於1991年正式推出第一顆商品化的鋰離子電池,從此改變世界。Goodenough是位大器晚成的學者。當他大學畢業時,還被徵召到歐洲參與二戰。之後他進入美國芝加哥大學攻讀固態物理博士,與楊振寧教授是同學,楊教授最近也剛過100歲生日。Goodenough早期在50年代的研究,以過渡金屬磁性氧化物材料為主,應用於磁性記憶元件,包括鐵鈷鎳的各式氧化物。Goodenough是在54歲之後才開始研究電池材料,也因為之前有著無機金屬氧化物的基礎,得以很快地在鋰離子電池的正極材料,做出重大貢獻。在美國大學教授是可以不退休的,Goodenough在90多歲的高齡,依舊活耀於學校的實驗室,並指導學生。他晚期的研究聚焦於全固態電池的開發,也就是用固態材料取代現行的液態電解液。此全固態電池,不僅可以更進一步地增加電池能量密度,電池壽命的延長,同時充電的時間也可以大幅縮短。Goodenough雖然在鋰離子電池上,有著卓越的貢獻,但是終其一生,卻沒有得到任何商業上所衍生的利益。在Goodenough之前,諾貝爾獎最高壽的得主是,獲得2018年物理獎的美國貝爾實驗室 Arthur Ashkin,當年他已經是96歲,因為optical tweezer的發明而獲獎。Ashkin在得獎後,對媒體說他抽不出時間接受採訪,因為他正忙於太陽能的研究。也許就是因為全心投入所喜愛的研究工作,使得這些研究人員得以延年益壽,不知老之將至。
2023-07-04
米德教授奇人奇事
在Chris Miller所著《晶片戰爭》(CHIP WAR: The Fight for the World’s Most Critical Technology)一書中,多次提到Gordon Moore(1929~2023)與加州理工學院(California Institute of Technology)米德教授(Carver Mead)的互動。在1965年,當Moore還在快捷半導體(Fairchild),手繪出從1959~1965年每一矽晶片中電晶體成長數字,總計只有5點數據,並預測未來成長會依照每1.5~2年以1倍的速度增加。Mead教授當時是快捷半導體的顧問,隨即將此稱之為「摩爾定律」(Moore's Law)。Mead曾回憶,當時他正在研究半導體內電子的量子穿隧效應(tunneling effect),在此事後沒多久Moore就問他,穿隧效應要在很小的尺度才會發生,那電晶體可以做到多小的尺寸?Mead花了些功夫答覆此問題。1968年,Mead提出電晶體尺寸微縮理論(scaling),也就是在MOS電晶體的閘極長度微縮同時,每一電晶體所需耗用的功率是與長度成平方的下降,同時電晶體速度卻等比例增加—即電晶體效能是隨著電晶體閘極長度微縮,而呈現3次方的改善。當Mead在學術會議上,報告MOS微縮理論時,並預測未來1個晶片上可以有上億個電晶體存在,並沒有多少人相信Mead的理論。當時認為在這麼小的尺寸下,光是所產生的熱即足以燒毀整個電晶體。事實證明Mead是對的,Moore's Law橫跨超過50年時間,最主要的基石在於尺寸的微縮,而Mead的理論提供Moore's Law的理論基礎。Mead在1970年代初期,即洞悉未來晶片上可以製作出眾多的電晶體,代表將擁有龐大的算力,其也因此建議英特爾(Intel)高層,發展電腦所需的晶片。不過,如何有自動化的IC設計工具,處理日益複雜的電路設計,成為一個關鍵議題,Mead的研究隨即轉向IC設計。Mead於1970年在加州理工學院開設VLSI課程,在課堂上並將學生所設計的各式IC,用統一的光罩,手刻出布局圖,最後完成矽晶圓的製作。這比國內晶片設計中心對學術界的服務,整整早了20年。Mead與Lynn Conway於1979年合著的Introduction to VLSI System,更是IC設計者手中的聖經。Mead在1970年代初期,即投入Si compiler的研究,這是電路模擬及布局圖自動化的濫觴,造就現在EDA工具的產業。Mead更於1979年提出未來半導體產業,會由多數的IC設計公司(fabless),及較少數目的晶圓廠(foundry)所組成。這與同時期張忠謀先生,在德州儀器(TI)內部所提出foundry概念,不謀而合。筆者在美國求學時,即久仰Mead大名。因為筆者的研究題目是化合物半導體的微波高速元件及積體電路,第一個發明出此類元件(1965年出現的GaAs MESFET)的正是Mead。化合物半導體很難成長出優質的氧化層,不像矽晶圓有高品質的二氧化矽,所以化合物半導體只能利用金屬作為閘極,直接接觸到半導體。此接觸(junction)因為材料不同,衍生很多的介面缺陷,因此電子幾乎無法在通道內(channel)運行。Mead很技巧地利用此接觸所產生的空乏區(depletion),來控制電子數量,也由於電子遠離介面,所以能夠自由地運行。至今我們在無線通訊所使用的高頻元件,其運作方式依舊是使用Mead的原創。Mead在2000年後,又回到基礎物理研究,尤其是量子的電動力學及重力理論。Mead似乎可以在不同的學術領域,來去自如,悠遊自得。Mead於2022年榮獲日本的京都賞,獎金是5,000萬日圓。京都賞是由京瓷(Kyocera)已故創辦人,稻盛和夫於1984年所創立,獎勵全球對於前瞻技術、基礎科學及人文藝術等3個領域有傑出貢獻人士。華裔科學家鄧青雲博士,發明有機發光二極體材料,於2019年獲得京都賞;中國清華大學資訊科學教授姚期智博士,也於2021年獲此殊榮。Mead的學術研究,由基礎的半導體元件,到IC compiler的原創,以至於VLSI設計,對於半導體相關的領域做出重大貢獻,在學術界還無人能出其右。他的洞察力及遠見,更激發整個半導體產業的發展,終究造福大眾。
2023-06-02
Tesla減少碳化矽用量 替代方案有解
近期外電及本地媒體大幅報導Tesla宣告將減少電動車中碳化矽(SiC)元件的使用量,並造成了幾家SiC供應商頓時股票大跌,包括Wolfspeed、意法(STM)、安森美(Onsemi)及英飛凌(Infineon)等。接下來隨即即有專家開始討論,Tesla是如何達到減少75%的SiC用量?半導體功率元件跟摩爾定律最大的不同在於,IC每進入一個新的製程節點,面積就會縮小一半,功率元件遠遠做不到。於是就有不同的組合被提出來,包括由原先的平面式(planar)SiC MOS電晶體,改為先進的溝槽式(trench)電晶體;或者因為電動車的電池系統要由400V改為800V,SiC MOS耐壓也要由650V挺進到1200V,由於電流可以減少一半,SiC MOS晶片面積得以等比例減少。但是,再怎麼算也到不了減少75%。最後只得加上馬達所需功率的減少,才勉強可以湊足。可是Tesla同時又宣布,未來馬達設計不使用稀土元素,這使得馬達效率的提升更形困難。Tesla此舉的目的是要降低成本,以建構與其他競爭者的障礙。但不論就使用溝槽式或1200V SiC MOS,的確晶片面積是可以減少,製程卻變複雜,實際成本下降反而有限,再加上這些都是所有競爭對手知道的趨勢,因此這會是個假議題嗎?在提出個人解答之前,筆者想先談一下製造產業的學習曲線。陳良榕先生在友刊的文章中提到,張忠謀在德儀(TI)及台積電,就是利用學習曲線創造出與競爭對手的差距,這在以製造為導向的產業是非常的重要。試想一個資本攤提完成的半導體廠,不僅成本最低,良率最好,同時單位的產出也最多,而新進競爭者,還在學習曲線的初期,是看不到台積電的車尾燈。Tesla現在也是利用所經歷學習曲線的優勢,來創造競爭優勢,而逆變器(inverter)所使用的SiC MOS就是個可以發揮的項目,因為價格不斐。個人的淺見認為,Tesla是使用Si IGBT(insulated-gate bipolar transistor;絕緣柵雙極性電晶體)取代SiC MOS,並使用SiC二極體(Schottky diode),作為IGBT所需的飛輪二極體(freewheeling diode;FWD)。電晶體分為兩類,一為雙極性(bipolar),另一為單極性(unipolar),也就是MOS。雙極性電晶體中電流與電壓之間的關係是指數函數(exponential),而MOS電晶體電流與電壓是1~2次方關係。所以雙極性電晶體在輸出電流驅動的能力是大於MOS,但是雙極性電晶體是靠輸入電流來工作,MOS則依靠絕緣柵極的電壓來動作,故雙極性電晶體比較耗電。IGBT的誕生即結合此二者優勢,在輸入端使用絕緣柵極(insulated-gate),而輸出保留高輸出電流的特性(bipolar)。逆變器主要的應用在於將電池的直流電轉換為三相交流電,用以驅動馬達。電晶體在此是作為電路的開關,MOS因為是對稱的元件結構,可以處理逆向流過的電流。但是IGBT的元件結構不對稱,需要額外並聯1個FWD。以SiC二極體作為FWD,可以大幅提升其效率,同時IGBT的高輸出電流能力,也可以提高逆變器的轉換效率。Tesla在Model 3使用SiC MOS之前,也是使用Si IGBT以及Si FWD,現在只需將Si FWD改為SiC。IGBT的缺點在於操作頻率較低,無法高溫操作,且耐壓不如SiC MOS,但這些在現行電動車系統,皆非嚴重問題。由於二極體電流與電壓的關係也是呈指數函數變化,再加上現行Tesla每一相開關是使用2顆SiC MOS並聯,筆者估計在相同輸出電流條件之下,使用SiC二極體的晶片面積,應該可以是 SiC MOS面積的25%。而二極體是製程最簡單的半導體元件,也最便宜,所以在SiC的費用上可以下降到原先的10~15%。只是還須加上個Si IGBT,因此總成本可為原先的30-40%。Tesla擁有別家車廠沒有的學習曲線,要拉大與競爭者的差距,如果筆者是Elon Musk,選擇Si IGBT加上SiC二極體的排列組合,降低SiC整體用量。
2023-03-30
科學家的上帝情結
科學家們追求真理是亙久不變的道理,因此主宰整個宇宙的上帝,便成為他們心目中真理的極致。然而,追求真理的路途是坎坷及艱辛的,這又讓科學家們深深覺得上帝的不可捉摸,而深受挫折。愛因斯坦(Albert Einstein)大概是最有名以上帝之名,發表評論的科學家。他以「上帝不會擲骰子」,表達對於量子力學哥本哈根學派所主張機率性假說的不認同。「我打賭上帝不會是個左撇子」,出此言的是知名物理學家Wolfgang Pauli,他以提出量子力學中「不相容原理」(exclusive principle),而獲頒諾貝爾獎。這時間點發生在華人物理學家吳健雄女士,準備以Beta衰變實驗,驗證也是華人物理學家楊振寧、李政道在1956年所提出的宇稱(parity)不守恆定律。宇稱的意義在於,物質的世界中,經過所謂鏡面反射,其所遵循的物理定律是一樣的,也就是物理定律存在著空間上的對稱性。楊李2位先生的理論說明在弱作用中,也就是粒子的衰變過程中,可以不遵守此守恆定律。吳健雄女士以鈷60的衰變實驗,證實只有左旋的粒子,參與此衰變反應,也證明此不守恆定律的確存在,也就是Pauli賭輸了。可惜的是,當時有好幾個實驗小組同時間進行此實驗,否則吳女士就有機會與楊李共同獲得1957年諾貝爾獎。說到上帝,最令人樂道的莫過於俗稱「上帝的粒子」的希格斯(Higgs)粒子。在1960年代,任教於英國愛丁堡大學的Peter Higgs,在研究基本粒子的標準模型時,提出一個機制可以賦予基本粒子的質量;後人就以希格斯場(Higgs Field)稱之,而這個場的量子化所衍生的就是希格斯粒子。從80年代開始,實驗物理學家紛紛提出建造更高能量的粒子加速器,找尋希格斯粒子。然而事與願違,尋找希格斯粒子的路途是一波三折,包括加速器的建造。因此實驗物理學家Leo Lederman,也是1988年諾貝爾物理獎的得主,寫了本科普書,而書名是Goddamn Particle「被上帝詛咒的粒子」,用以說明尋找希格斯粒子的挫折及挑戰。然而出版商覺得此名不妥,書名也隨後更改為「上帝的粒子」。事實上物質無所不在,而構成粒子質量的希格斯場及粒子,也就無所不在,所以被稱為上帝的粒子也不為過。到底,上帝的粒子是如何被詛咒的?首先在美國雷根政府(Presidency of Ronald Reagan)時代,通過超導磁鐵超級對撞機(Superconductor Super-collider;SSC),利用質子對撞產生的巨大能量,尋找希格斯粒子蹤跡。這個計畫始於1987年,在美國德州70公尺的地下,開挖圓周長87公里的通道,預期經費是110億美元。很不幸到了柯林頓政府(Presidency of Bill Clinton)時期,國會否決繼續開發此案所需的經費,而將資金挪到建造國際太空站。至今在德州的草原下,仍留下長度超過22公里的地下隧道。歐洲核子研究組織(CERN)在1989年就已經運作大型電子及正子(Large Electron and Positron;LEP)對撞機,正子就是電子的反粒子。這是個橫跨法國及瑞士邊界,地底下175公尺,圓周長27公里的龐然大物。LEP在初期並不是為發現希格斯粒子所設計,在其所規劃的實驗中,均獲得不錯的結果。實驗物理學家則嘗試增加對撞電子及正子的能量,企圖一舉找到上帝的粒子。就在LEP幾乎達到該粒子的理論能量值時,發現幾個驚鴻一瞥的零星個案,但卻不具有完整的說服力,一步之遙令科學家們扼腕不已。CERN痛定思痛,在2000年時決心拆除LEP,在原址改建為大型強子對撞機(Large Hardon Collider;LHC),這次是針對尋找希格斯粒子而設計,改採質子對撞。這一改就是10年光陰,以及80億美元的經費。最後終於在2012年7月,經過2組獨立的團隊,分析相關的數據,分別得到足以採信證據,宣布找到希格斯粒子。歷經超過50年努力,無數人力及資金的投入,這大概是有史以來最為浩大的科學實驗。諾貝爾委員會也隨即將2013年的諾貝爾物理獎,頒給理論提出者Higgs及Francois Englert等2位教授。當時希格斯教授已經84歲了。愛因斯坦曾說「上帝難以捉摸,但並不心懷惡意」(Subtle is the Lord, but malicious He is not),這說明人類在追求真理的道路上,還有很長的路要走。愛因斯坦晚年任職於普林斯頓高等研究院,周末時間仍到研究室工作,同仁見到他勸說不必如此地辛勞,愛因斯坦的回答是「上帝禮拜天也沒有休息」。
2023-03-16
ChatGPT預示人工智慧挑戰量子運算可能性
去年(2022年)底科技界最火紅的話題,莫過於OpenAI所推出的ChatGPT,這是個可以透過文字或對話,與人類直接互動的人工智慧產物。由於我們是無法有效地分辨出所互動的對象是人或機器,達到所謂圖靈驗證(Turing test)的終極要求。GPT(generative pre-trained transformer)是所謂的生成型人工智慧(AI),只要有主題句或初始對話,這已被訓練好的生成型人工智慧,即可寫出一篇文字流暢且具思想的文章,或者與我們侃侃而談。人工智慧的發展及演進已經歷好幾個世代,早已跳脫利用海量資訊,將人類過往的知識及經驗,蛛絲馬跡般地尋找出最適切的解決方案,取而代之的是機器自己的學習,並創造出人類沒有嘗試過的解決方案。生成型人工智慧就是近來備受關注的,其所使用的是自我迴歸(auto-regressive)演算法。程式設計師需要將所欲解決問題的基本規則輸入,包括相關的參數,並設定好最終的目標值。接著電腦就開始不間斷地自我學習(預測)以及檢驗,找出各參數在這個當下時間節點的輸出預測值,並與上一個時間節點的輸入參數做比較(檢驗),如果兩者間有其相關性,則對於下一個時間節點的預測就更有把握及準確。一旦達到所設定的目標值,這個人工智慧的自我訓練就大功告成。DeepMind在幾年前所推出的AlphaZero,在經過4小時的自我學習訓練,隨即打敗所有下西洋棋的電腦程式。自我迴歸演算法,在各參數不斷地預測及檢驗的循環下,需仰賴龐大的計算能力。所幸先進的半導體技術,已提供所需的運算平台。以使用4奈米技術所製作的最先進高速運算晶片為例,其晶片已內含超過1,000億個電晶體。不久前超微(AMD)在CES 2023會場上,所發表新一代的運算架構,9顆小晶片(chiplet)的堆疊,使電晶體數目更超過1,400億顆。其實說穿了,生成型人工智慧與量子運算是殊途同歸,兩者解決問題所採取的步驟都是類神經網路的架構,在不斷地預測與優化間,找到最適切的解答。不同的是,量子運算乃自然界微觀世界所提供的量子疊加(superposition)與糾纏(entanglement);人工智慧是人為演算法及半導體算力。自然界產物比較難以捉摸,人為的世界比較可以預測。量子運算的硬體架構經過多年的發展,依然很難決定要往哪一個方向前進,這其中製作量子位元(qubit)相關的技術就包括超導體、離子阱(ion trap)、光子或者電子自旋(spin)。在資源無法集中的情況下,勢必會影響到量子運算達到實際應用的時程表。甚至有專家開始提出,結合超級電腦人工智慧運算的能力,以及量子運算的獨特性,相輔相成共同完成艱鉅問題的解決能力。換言之,當量子運算還不清楚該如何跨出下一步時,生成型人工智慧在演算法不斷地精進,及更龐大運算能力的硬體支持下,已逐漸挑戰到未來量子電腦所擅長的領域。科技的發展很難用以始為終的邏輯來判斷,需要密切關注發展中的每一個環節,並時時做修正。以TFT-LCD顯示器為例,OLED的確有非常好的條件取代TFT-LCD,但是整體發展下來,OLED也僅能在中小尺寸的顯示器有所著墨。反而TFT-LCD採用OLED作為背光源,更壯大TFT-LCD在產業的聲勢。個人淺見認為,量子運算有可能走入OLED的命運,甚至更慘。2022年諾貝爾物理獎頒給在量子資訊領域有傑出貢獻的3位學者,一時間有不少的報導認為量子運算已備受肯定,未來商品化的價值指日可待。事實上諾貝爾委員會所表彰的是這三位學者,以實驗證明貝爾不等式(Bell inequalities)的不存在,也間接地指出愛因斯坦狹義相對論的不完備。這全然是根源於基礎物理的實證,與未來的應用沒有關聯。諾貝爾委員會曾頒過2次物理獎給量子霍爾效應(quantum Hall effect)相關研究,原先也被認為未來會有應用及商品化的價值,但後來都沒發生。台灣投入不少資源在量子運算的發展上,但如果以未來應用的可行性來審視,人工智慧的發展更應該要有積極的規劃。
2023-02-06
世足賽的科技足球
4年一次的第22屆世界盃足球賽(下稱世足賽),於2022年底在卡達風光落幕,阿根廷在足球巨星Lionel Messi的帶領下,奪得阿根廷隊史第三座世足賽冠軍,僅次於巴西的5座,以及德國及義大利的4座。此次世足賽除了入圍的32支隊伍的精彩演出外,另一個吸睛的焦點是那顆科技感十足的足球。媒體也大幅地報導在比賽前那顆足球要先充飽電,才能上場。舉凡比賽時,該足球在場內運動的3維軌跡,如座標、速度、角速度及加速度等都會被完整記錄,而且是即時將資料傳送到資料庫及訊號處理器上。在葡萄牙對戰烏拉圭的那場球,葡萄牙大將Cristiano Ronaldo將隊友傳球,用頭錘應聲入網。大家都以為是Ronaldo建功,但事後分析數據顯示球只些許碰觸到Ronaldo的頭髮,該進球最後是判給其隊友。如果讀者還有印象,在1986年阿根廷奪冠的世足賽,八強賽中阿根廷對上英格蘭,Diego Maradona用頭錘進了關鍵一球,以2:1氣走英格蘭。事隔多年後,Maradona承認當時是用左手撥進那顆球,並被稱之為上帝之手(The hand of God)。如果那時就有如此先進的足球,很容易就能夠真相大白了。這顆足球是如何做到有如此的神奇功能?原來足球內含了一個慣性量測單元(inertial measurement unit;IMU),以及超寬頻無線傳輸系統(ultra wide band;UWB),加起來重量不到15公克。IMU是由三軸陀螺儀及三軸加速器所組成,使用矽基板的微機電技術(MEMS)所製作。矽基板除了是積體電路製作上最關鍵的材料外,矽原子間是以共價鍵作為鍵結,本身也具有非常優異的機械特性。試想一個12吋的晶圓,直徑的長度是30公分,而厚度卻不到0.1公分,在此長度與厚度比值超過300的基板上,頭尾的平整度卻能夠維持在1個原子差距內,可見其機械強度的優越性。因此在1980年代,學術機構開始利用矽基板及半導體的微影製程,製作出各式微機械元件,如微小型的齒輪、軸承,滑桿等。再加上使用的是矽基板,很自然地可以將相關的資訊以電訊號傳送出來,所以統稱為微機電。由於是將力學資訊轉換為電訊號,因此也被稱為感測器(sensor)或傳感器(transducer)。IMU的製作是利用半導體的製程,在矽基板表面先製作出一個感應膜(membrane),其下方是被掏空的,而感應膜是以精巧的懸臂與矽基板相連接。感測膜的設計,可以用來偵測不同方向的直線加速或旋轉的力量,藉由感應膜的位移、偏移或轉動,隨之改變感測器的電阻值或電容值,間接地也得知受力的方向及強度。由於是微小化的感測器,所以才能放置在足球內。UWB與其他無線通訊系統最大的差異,在於其使用的是脈衝式無線電波,就如同雷達般,除了可傳輸數據外,更能夠精準地量測物件的位置,再加上低功耗特性,近來開始使用在感測網路(sensing network)、物聯網(IoT)應用。如果在足球場的周圍架上十幾個UWB的相位天線,一來可以接收由足球所傳來關於球運動軌跡的資訊,另一方面也可以即時精準定位足球;甚至球隊在訓練時,讓每一位球員都戴上UWB發射器,教練就可以完全掌握住每位球員的跑位,以及足球運動方位的資訊。除了IMU及UWB外,此次世足賽也採用表面有微凹結構的足球,如同高爾夫球的表面一樣。由於球在運動時,球的後方會產生一個氣壓較低的區域,形成擾流(turbulence),增加足球阻力,也增加運動的不穩定性。這些表面的微凹結構,能夠有效減少此後方低氣壓的區域,增加球速及穩定性,同時也增加守門員的挑戰,不過這些都是球迷所樂見的。足球是世界上運動人口及球迷最多的運動,也是資源投入最多及市場規模最大的運動項目。現代的科技無所不在,運動市場是科技業很好的合作平台,不僅擁有龐大商機,同時也造福廣大球迷。
2023-02-02
破解半導體「去台化」困局
美國一家頗具規模,使用成熟製程的IC設計公司,不久前將原本在中國生產的晶片,轉移到台灣及南韓的晶圓代工廠;但是轉移到台廠,並非是在台灣的工廠生產,而是轉移到台廠位於新加坡的晶圓廠。
2022-12-06
與諾貝爾獎擦身而過的Nick Holonyak
任教於美國伊利諾大學香檳(Champion)校區電機系的Nick Holonyak Jr.教授,於2022年9月過世,享壽93歲。Holonyak在半導體光電領域,有著超過半個世紀的傑出貢獻。在LED以及雷射二極體的原創上,更兩度與諾貝爾物理獎插身而過。
2022-11-25
國家安全與科技霸權 中美對抗已難避免
國家安全近來在科技強權國家,是一個不可被侵犯的領域,在態勢上也逐漸走上同仇敵愾的群體行為。
2022-10-28
衝擊日本企業倫理的2件訴訟案
長期以來,日本企業對待其員工以終身聘僱為職志,在此前提下也要求員工對公司永遠的忠誠。
2022-10-19
訂閱椽經閣電子報
新文章上刊時發送,提供您DIGITIMES專家及顧問群的最新觀點、見解。
熱門報導
川普風暴與科技業的諸多挑戰(14):留下一線生機
川普風暴與科技業的諸多挑戰(13):鄉村包圍城市
<<
1
2
3
4
5
>>
智慧應用
影音